g
,|

= m
o e

SEBASTIAN POEPLAU
(WITH YANICK FRATANTONIO, ANTONIO BIANCHI,
CHRISTOPHER KRUEGEL, GIOVANNI VIGNA



CODE LOADING IN
ANDROID

A

s¢ Apps can load code dynamically

at runtime

A

*E.g., download code from
the Internet

A

“¢ Various ways
(DexClassLoader,
CreatePackageContext, etc.)

A

st Good news: Permissions
enforced on external code

s Bad news: No additional checks

/ Create cache directory 1f necessary
String dexDir = "LoaderOptimized";
File optimized = context.getDir(dexDir, 9);
try {

optimized.createNewFile();

} catch (10Exception e) {
logView.append("Error: execution failed\n");
Log.e(TAG, "Dex dir creation failed", e);

'/ Create the class loader
DexClassLoader loader = new DexClasslLoader(
mExecutableFile.getAbsolutePath(),
optimized.getAbsolutePath(),
null, context.getClassloader());
try {
'/ Find class and method
Class<?> remote ~ loader.loadClass("MyRemote(Class");
Method run = remote.getMethod("doSomething",
Context.class);

/ Instantiate the class

Object code - remote.newlnstance();

'/ Invoke the method on the instance
run.invoke(code, context);

} catch (ClassNotFoundException e) {
logView.append("Error: execution failed\n");
Log.e(TAG, "Unable to load the class", e);

} catch (InstentiationException e) {
logView.append("Error: execution failed\n");
Log.e(TAG, "Unable to instantiate the class", e);

} catch (IllegalAccessException e) {
logView.append("Error: execution failed\n");

Log.e(TAG, "Access to the class forbidden", e);
1 roabeh INACLAbMabbhadE veranks an aN [



| o licions apps

Al

 Download arbitrary additional code to circumvent offline
analysis

R

s%¢ Reminder: Checks run at the store

Al

¢ Conceptual flaw 1n the stores’ vetting process
2 . Benign apps

%...use code-loading techniques as well (details later)

A

“¢ Mlust implement custom security mechanisms

Al

¢ Dangerous vulnerabilities



»-
T~

e

e NPT
g ey

R

oy e 5 T
e e

Ty
A ey

T
s

e Wy




N2

s Simple downloader app .

l!l Awesome Downloader

Al

s¢ Connects to our server

Download and execute

% Downloads a payload Clear log
Downloading
Download finished

st Executes the payload Ecuies fniahes

s Submitted to Google Play in April 2013, accepted

within 90 minutes

s¢ Allows to run arbitrary code on users’ devices

¢ Even targeted payloads possible

¢ Remark: we refrained from using it on other
people’s devices...




GUNZOMBIE EXPLOIT

Al

¢ Benign app, among top 50 in November 2012, millions of users

Az

% Includes advertisement framework ApplL.ovin

A

s Framework tries to download updates...

\/
q

2

A
K\

...on every app launch...
% ...via HTTP!
% No real integrity/authenticity checks

A

¢ App 1s vulnerable to code injection (by hijacking the HTTP connection)

Android system

Application code Application code

Framework

request new version




ATTACKING A SHARED
FRAMEWORK

¢ Popular framework for app development (not named here)
¢ Installed as a stand-alone app

% Loaded via app identifier

¢ App 1dentifiers are not globally unique!

¢ We 1nject code by installing an app with the same identifier first

Android system

Application code Application code

Common

Framework stub i Framework stub framework







-
—

¢ Goal: assess percentage of apps vulnerable to
code 1njection due to dynamic loading

A/

¢ Test set: 1,632 apps from Google Play, each
with 1,000,000+ installations

Al

s Secondary test sets: top 50 free apps as of
November 2012 and August 2013, respectively

¢ Techmque: static analysis, heuristics to detect
code-loading techniques (more later)

9



A

5¢ Various ways to load external code

s Load JARs, APKs, DEX files (compiled Java code)

A

¢ Linux shared objects (native code)

A

¢ Load code from other apps

Al

s Install APKSs (requires user approval)

A

s Various pitfalls...

Al

¢ Insecure downloads using HTTP

S

¢ Download to world-writable storage locations

A

st Assumption of package name uniqueness



Al

¢ Goal: find code loading and detect vulnerable implementations
s Construct CFG with the help of Androguard

3¢ Transformation into SSA

s Context-insensitive call graph construction based on class hierarchy
analysis

¢ Heuristics based on backward slicing

Nl

¢ Determine value of sensitive API parameters

Al

s Example createPackageContext(name, flags): check that flags cause
runtime environment to load code

s¢ Classification step based on heuristics

Al

s Heuristics for all prev10usly mentioned loadlng techmques

11



%9.25% out of 1,632 apps vulnerable

¢ Stmilar situation among top apps

Al

¢ Alarming tendency: more vulnerable apps in top 50 in August

2013 than November 2012

A

¢ Different motivations for use of code loading

Al

¢ Updates (e.g., ApplLovin)

A

¢ Shared components
¢ A/B and beta testing
Al

¢ Loading add-ons

12






Android device - Google Play

] \
download verificationresults Amazon Appstore
| \

P

check apps Other stores...
o

2 Trusted entities (e.g. app stores) publish whitelists

P~

¢ Comparable to code signatures

— .

s Users can choose from different whitelist providers

P~

¢ Code 1s checked against whitelist before execution

A

¢ Prevents all exploits mentioned before

14



Al
Ny

NA
K\

Az
N3

IMPLEMENTATION

Android processes

wmem —
on disk load update -

check hashes

Based on standard Android 4.3

Modification of DVM

Al

¢ Reminder: DVM executes Java code for apps

s Apps have to ask DVM to load external code

Al

% DVM processes keep shared whitelist in memory

¢ Negligible performance penalty

Problem: native code (more later)

15







¢ Cannot control loading 1n native code
¢ Prohibiting native code entirely 1s not an option
¢ Idea: adapt Google Native Client

¢ Sandbox for running native code in browsers

Available for ARM architecture

Al
7\

\
\

2 Restrict native code, so that malicious external
native code 1s not a problem

P

¢ Subject to ongoing research...

17



* Modification of the Android system

—_—

P~

¢ Requires update or reinstallation

¢ Realistically only deployable to new devices

— .

¢ For 1deal distribution Google has to approve

s Verihication providers

A

s« Stores already check every single app

— .

¢ Adding checks of external code 1s feasible

18






A

¢ Large-scale study on external code-loading

in benign and malicious Android apps

Al

9.25% of popular benign apps are

vulnerable, millions of users at risk

A

s Malicious apps can evade detection

Al

 Proposed a flexible protection scheme

20



R

B Ry L et et T

o e

=i
7-»"’? 't’::‘"r,\

e

R s




