
Thug: a low-interaction honeyclient

Angelo Dell'Aera

Speaker

 Chief Executive Officer @ Honeynet Project
 Information Security Independent Researcher @ Antifork

Research (10+ years)

Agenda

 Introduction
 Honeyclient technologies
 Thug
 Conclusions

Client-side attacks

 The number of client-side attacks has grown significantly in
the past few years shifting focus on poorly protected
vulnerable clients

 In the last years more and more attacks against client
systems

 The browser is the most popular client system deployed on
every user system

 A lot of vulnerabilities are identified daily and reported in the
most used browsers and in third-party plugins

Honeyclients

 Just as the most known honeypot technologies enable
research into server-side attacks, honeyclients allow the
study of client-side attacks

 A complement to honeypots, a honeyclient is a tool
designed to mimic the behavior of a user-driven network
client application, such as a web browser, and be
exploited by an attacker’s content

Honeyclients

 What we need is something which seems like a real
browser the same way as a classical honeypot system
seems like a real vulnerable server

 A real system (high-interaction honeyclient) or an
emulated one (low-interaction honeyclient)?

Document Object Model (DOM)
“The Document Object Model is a platform- and language-neutral interface that
will allow programs and scripts to dynamically access and update the content,
structure and style of documents. The document can be further processed and the
results of that processing can be incorporated back into the presented page.”

 Thug DOM is (almost) compliant with W3C DOM Core,
 HTML, Events and Views specifications (Level 1, 2 and
 partially 3) and partially compliant with W3C DOM Style
 specifications
 Designed with the requirement that adding the missing
 features has to be as simple as possible

Document Object Model (DOM)
Browser Personalities

 Drive-by download attacks target specific versions of the
 browser so a properly designed low-interaction honeyclient
 should be able to emulate different browser personalities
 Supporting different browser personalities is almost a
 matter of implementing different (and sometimes totally
 incompatible) DOM behaviors and interfaces

Supported Browser Personalities – 1/2

➢ Internet Explorer 6.0 (Windows XP)
➢ Internet Explorer 6.1 (Windows XP)
➢ Internet Explorer 7.0 (Windows XP)
➢ Internet Explorer 8.0 (Windows XP)
➢ Chrome 20.0.1132.47 (Windows XP)
➢ Firefox 12.0 (Windows XP)
➢ Safari 5.1.7 (Windows XP)
➢ Internet Explorer 6.0 (Windows 2000)
➢ Internet Explorer 8.0 (Windows 2000)
➢ Internet Explorer 8.0 (Windows 7)
➢ Internet Explorer 9.0 (Windows 7)
➢ Chrome 20.0.1132.47 (Windows 7)
➢ Firefox 3.6.13 (Windows 7)
➢ Safari 5.1.7 (Windows 7)

Supported Browser Personalities – 2/2

➢ Safari 5.1.1 (MacOS X 10.7.2)
➢ Chrome 19.0.1084.54 (MacOS X 10.7.4)
➢ Chrome 26.0.1410.19 (Linux)
➢ Chrome 30.0.1599.15 (Linux)
➢ Firefox 19.0 (Linux)
➢ Chrome 18.0.1025.166 (Samsung Galaxy S II, Android 4.0.3)
➢ Chrome 25.0.1364.123 (Samsung Galaxy S II, Android 4.0.3)
➢ Chrome 29.0.1547.59 (Samsung Galaxy S II, Android 4.1.2)
➢ Chrome 18.0.1025.133 (Google Nexus, Android 4.0.4)
➢ Safari 7.0 (iPad, iOS 7.0.4)

Document Object Model (DOM)
Event Handling

• W3C DOM Events specification constitute the most
difficult one to emulate because of the (sometimes huge)
differences in how different browsers handle events

• Thug emulates the different behaviors of the supported
browsers emulating load and mousemove events by
default and allowing to emulate all the other ones if
needed

Document Object Model (DOM)
Hooks

• Thug defines some DOM hooks which are useful for
analyzing well-known exploits

• The next example shows how Thug implements an hook
for analyzing a Java exploit with security prompt/warning
bypass (CVE-2013-2423)

Document Object Model (DOM)
Hooks

def _handle_jnlp(self, data, headers):
 try:
 soup = BeautifulSoup.BeautifulSoup(data)
 except:
 return

 if soup.find("jnlp") is None:
 return

 log.ThugLogging.add_behavior_warn(description = '[JNLP Detected]', method = 'Dynamic Analysis')

 for param in soup.find_all('param'):
 log.ThugLogging.add_behavior_warn(description = '[JNLP] %s' % (param,),
 method = 'Dynamic Analysis')
 self._check_jnlp_param(param)

 jar = soup.find("jar")
 if jar is None:
 return

 try:
 url = jar.attrs['href']
 headers['User-Agent'] = self.javaWebStartUserAgent
 response, content = self.window._navigator.fetch(url, headers = headers, redirect_type = "JNLP")
 except:
 pass

Javascript

 Google V8 Javascript engine wrapped through PyV8
 “V8 implements ECMAScript as specified in ECMA-262, 5th edition,

and runs on Windows, Mac OS X , and Linux systems that use IA-32,
x64, or ARM processors. The V8 API provides functions for compiling
and executing scripts, accessing C++ methods and data structures,
handling errors, and enabling security checks”

• Abstract Syntax Tree generation and inspection (static
analysis)

• Context inspection (dynamic analysis)
• Other potentially interesting features (GDB JIT interface,

live objects inspection, code disassembler, etc.) exported
through a clean and well designed API

 Analysis

 Static analysis
➢ Abstract Syntax Tree (AST)

 Dynamic analysis
 V8 debugger protocol
 Libemu integration (shellcode detection and

emulation)

Abstract Syntax Tree (AST)

• Static analysis
➢ Static attack signatures
➢ Interesting breakpoints identification for later dynamic

analysis
➢ Symbols identification for later dynamic analysis

• Easily built through V8 API
• Thug AST implementation is quite generic and extensible

and allows easily building and inspecting the tree

Vulnerability Modules

 Python-based vulnerability modules

 ActiveX controls
 Core browser functionalities
 Browser plugins

ActiveX

• Thug implements an ActiveX layer of its own for emulating
ActiveX controls (just for Internet Explorer personalities)

• It makes use of (Python) vulnerability modules in order to
emulate such ActiveX controls or just some of their
methods and attributes

• The layer was designed in order to allow adding new
ActiveX controls in a fast and easy way

Browser Plugins

• Drive-by download attacks target specific versions of the
 browser plugins so a properly designed low-interaction
 honeyclient should be able to emulate different browser
 plugins versions or to disable them

-A, --adobepdf= Specify the Adobe Acrobat Reader version (default: 9.1.0)

 -P, --no-adobepdf Disable Adobe Acrobat Reader plugin

 -S, --shockwave= Specify the Shockwave Flash version (default: 10.0.64.0)

 -R, --no-shockwave Disable Shockwave Flash plugin

 -J, --javaplugin= Specify the JavaPlugin version (default: 1.6.0.32)

 -K, --no-javaplugin Disable Java plugin

Logging

• MITRE MAEC logging format
• JSON logging format (contributed by Avira)
• Exploit graph (contributed by Avira)
• “Flat” log files (not so exciting I know)
• MongoDB
• HPFeeds

 thug.events channel (URL analysis results published in
MAEC format)

 thug.files channel (downloaded samples)

Logging

Blackhole 2.0 Exploit Kit

 {

“timestamp”: “2013-04-13 13:43:54.307237”,

“cve”: “None”,

"description": [window open redirection] about:blank->
 hxxp://purrfectpetresort.com/news/wanting_book_switch.php“,

 "method": "Dynamic Analysis"

}

Logging

 {

"mimetype": "PE32 executable (GUI) Intel 80386 (stripped to external PDB), for MS Windows",

"url": "hxxp://cadgrad.com/adobe/update_flash_player.exe",

"flags": {},

"sha256": "d59d9af4e9ec25431acfd8938895b5c3b728d818db024d76f5aa265e0b171f4f",
"content-type": "application/octet-stream",

"md5": "a3266663f644dc0c0df42e8da1404878",

"size": 130560

}

• Classifiers support was introduced in Thug 0.4.24 and is
based on Yara signatures

• Currently two classifiers exist:
➢ URL classifier
➢ Javascript classifier

Classifiers

The URL classifier works on URL pattern matching trying to
identify typical exploit kits URL i.e.

rule Blackhole_V2_2 : Exploit_Kit {

 meta:

 author = "Thorsten Sick"

 strings:

 $url = /\/closest\/\w{15,35}.php/ nocase

 condition:

 $url

}

URL Classifier

 The Javascript classifier exploits the idea that even if the code is
obfuscated Thug goes through all the deobfuscation stages.
Working this way it can catch details which does not change so
frequently in a typical exploit kit i.e.

rule PluginDetect : Multiple_Exploit_Kits {

 meta:

 author = "Angelo Dell'Aera"

 strings:

 $jar = "getjavainfo.jar" nocase

 $pdpd = "pdpd" nocase

 $getver = "getversion" nocase

 condition:

 ($jar or $pdpd) and $getver

}

Javascript Classifier

Thug source code is publicly available at

https://github.com/buffer/thug

Contributions, comments and feedback welcome!

Source code

Thanks for the attention!

Questions?

Angelo Dell'Aera
<angelo.dellaera@honeynet.org>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

