
Execute This!
L o o k i n g i n t o

c o d e - l o a d i n g t e c h n i q u e s
o n A n d r o i d

S e b a s t i a n P o e p l a u
(w i t h Y a n i c k F r a t a n t o n i o , A n t o n i o B i a n c h i ,

C h r i s t o p h e r K r u e g e l , G i o v a n n i V i g n a

Code loading in
Android

Apps can load code dynamically
at runtime	

E.g., download code from
the Internet	

Various ways
(DexClassLoader,
CreatePackageContext, etc.)	

Good news: Permissions
enforced on external code	

Bad news: No additional checks

2

Implications
1.Malicious apps	

Download arbitrary additional code to circumvent offline
analysis	

Reminder: Checks run at the store	

Conceptual flaw in the stores‘ vetting process	

2.Benign apps	

...use code-loading techniques as well (details later)	

Must implement custom security mechanisms	

Dangerous vulnerabilities

3

Proof-of-concept
exploits

Bypassing Google
Bouncer

Simple downloader app	

Connects to our server	

Downloads a payload	

Executes the payload	

Submitted to Google Play in April 2013, accepted
within 90 minutes	

Allows to run arbitrary code on users‘ devices	

Even targeted payloads possible	

Remark: we refrained from using it on other
people‘s devices...

5

Gunzombie exploit
Benign app, among top 50 in November 2012, millions of users	

Includes advertisement framework AppLovin	

Framework tries to download updates...	

...on every app launch...	

...via HTTP!	

No real integrity/authenticity checks	

App is vulnerable to code injection (by hijacking the HTTP connection)

6

Attacking a shared
framework

Popular framework for app development (not named here)	

Installed as a stand-alone app	

Loaded via app identifier	

App identifiers are not globally unique!	

We inject code by installing an app with the same identifier first

7

Large-scale
study

How prevalent is the
problem?

Goal: assess percentage of apps vulnerable to
code injection due to dynamic loading	

Test set: 1,632 apps from Google Play, each
with 1,000,000+ installations	

Secondary test sets: top 50 free apps as of
November 2012 and August 2013, respectively	

Technique: static analysis, heuristics to detect
code-loading techniques (more later)

9

Loading techniques
Various ways to load external code	

Load JARs, APKs, DEX files (compiled Java code)	

Linux shared objects (native code)	

Load code from other apps	

Install APKs (requires user approval)	

Various pitfalls...	

Insecure downloads using HTTP	

Download to world-writable storage locations	

Assumption of package name uniqueness

Detection approach
Goal: find code loading and detect vulnerable implementations	

Construct CFG with the help of Androguard	

Transformation into SSA	

Context-insensitive call graph construction based on class hierarchy
analysis	

Heuristics based on backward slicing	

Determine value of sensitive API parameters	

Example createPackageContext(name, flags): check that flags cause
runtime environment to load code	

Classification step based on heuristics	

Heuristics for all previously mentioned loading techniques

11

Analysis results
9.25% out of 1,632 apps vulnerable	

Similar situation among top apps	

Alarming tendency: more vulnerable apps in top 50 in August
2013 than November 2012	

Different motivations for use of code loading	

Updates (e.g., AppLovin)	

Shared components	

A/B and beta testing	

Loading add-ons

12

Our Protection
Mechanism

Whitelisting scheme

Trusted entities (e.g. app stores) publish whitelists	

Comparable to code signatures	

Users can choose from different whitelist providers	

Code is checked against whitelist before execution	

Prevents all exploits mentioned before

14

Implementation

Based on standard Android 4.3	

Modification of DVM	

Reminder: DVM executes Java code for apps	

Apps have to ask DVM to load external code	

DVM processes keep shared whitelist in memory	

Negligible performance penalty	

Problem: native code (more later)

15

Limitations and
Future Work

Native code
Cannot control loading in native code	

Prohibiting native code entirely is not an option	

Idea: adapt Google Native Client	

Sandbox for running native code in browsers	

Available for ARM architecture	

Restrict native code, so that malicious external
native code is not a problem	

Subject to ongoing research...

17

Practicality

Modification of the Android system	

Requires update or reinstallation	

Realistically only deployable to new devices	

For ideal distribution Google has to approve	

Verification providers	

Stores already check every single app	

Adding checks of external code is feasible

18

Conclusion

Conclusion

Large-scale study on external code-loading
in benign and malicious Android apps	

9.25% of popular benign apps are
vulnerable, millions of users at risk	

Malicious apps can evade detection	

Proposed a flexible protection scheme

20

Thank You!
Questions?

